Branching Processes
نویسنده
چکیده
The study of branching processes began in the 1840s with Irénée-Jules Bienaymé, a probabilist and statistician, and was advanced in the 1870s with the work of Reverend Henry William Watson, a clergyman and mathematician, and Francis Galton, a biometrician. In 1873, Galton sent a problem to the Educational Times regarding the survival of family names. When he did not receive a satisfactory answer, he consulted Watson, who rephrased the problem in terms of generating functions. The simplest and most frequently applied branching process is named after Galton and Watson, a type of discrete-time Markov chain. Branching processes fit under the general heading of stochastic processes. The methods employed in branching processes allow questions about extinction and survival in ecology and evolutionary biology to be addressed. For example, suppose we are interested in family names, as in Galton’s original problem, or in the spread of a potentially lethal mutant gene that arises in a population, or in the success of an invasive species. Given information about the number of offspring produced by an individual per generation, branching process theory can address questions about the survival of a family name or a mutant gene or an invasive species. Other questions that can be addressed with branching processes relate to the rate of population growth in a stable versus a highly variable environment. Some background in probability theory is required to apply branching process theory. We present some of this background in the next section. Then we discuss single-type and multi-type Galton-Watson branching processes, and extensions to random environments that will address questions about population survival and growth.
منابع مشابه
Central Limit Theorem in Multitype Branching Random Walk
A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.
متن کاملContinuous-state Branching Processes and Self-similarity
In this paper we study the α-stable continuous-state branching processes (for α ∈ (1, 2]) and the α-stable continuous-state branching processes conditioned never to become extinct in the light of positive self-similarity. Understanding the interaction of the Lamperti transformation for continuous-state branching processes and the Lamperti transformation for positive, self-similar Markov process...
متن کاملJump-type Fleming-viot Processes
In 1991 Perkins [7] showed that the normalized critical binary branching process is a time inhomogeneous Fleming-Viot process. In the present paper we extend this result to jump-type branching processes and we show that the normalized jump-type branching processes are in a new class of probability measure-valued processes which will be called “jump-type Fleming-Viot processes”. Furthermore we a...
متن کاملBranching Processes of General Petri Nets
We propose a new model of branching processes, suitable for describing the behavior of general Petri nets, without any finiteness or safeness assumption. In this framework, we define a new class of branching processes and unfoldings of a net N , which we call faithful. These coincide with the safe branching processes and unfoldings if N is safe, or weakly safe as in [Engelfriet 1991], but not i...
متن کامل2 00 7 On continuous state branching processes : conditioning and self - similarity . December 10 , 2008
In this paper, for α ∈ (1, 2], we show that the α-stable continuous-state branching processes and the associated process conditioned never to become extinct are positive self-similar Markov processes. Understanding the interaction of the Lamperti transformation for continuous state branching processes and the Lamperti transformation for positive self-similar Markov processes permits access to a...
متن کاملBranching Processes, the Max-Plus Algebra and Network Calculus
Branching processes can describe the dynamics of various queueing systems, peer-to-peer systems, delay tolerant networks, etc. In this paper we study the basic stochastic recursion of multitype branching processes, but in two non-standard contexts. First, we consider this recursion in the max-plus algebra where branching corresponds to finding the maximal offspring of the current generation. Se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010